Lachs Mit Gemüsereis

Konvergenz im quadratischen Mittel Wünsche nochmals einen guten Abend. Für n = 2, 3,... sei Geben Sie eine Funktion f an, gegen die die Folge (f_n) im quadratischen Mittel konvergiert. Ich habe mich zunächst einmal mit der Begrifflichkeit vertraut gemacht. Wir haben "Konvergiert im quadr. Mittel" so definiert: Eine Folge f_n konvergiert genau dann im quadratischen Mittel gegen, wenn Nun habe ich einfach mal ein paar Werte für n in die Funktion oben eingesetzt um mir ein Bild machen zu können n = 2, 4, 8 Irgendwie komme ich jetzt nicht auf die Lösung. Mir ist klar, dass 0 und 1 bei der Funktion f eine große Rolle spielen. Auf welchem Intervall durchschaue ich jetzt aber nicht. Aber dann weiß ich nicht, wie ich mit n(x-(0, 5 - 1/n)) umgehe. Wie muss ich die Fragezeichen ausfüllen? Grüße Flaky 30. 12. 2007, 21:37 system-agent Auf diesen Beitrag antworten » das intervall "in der mitte" wird immer kleiner je grösser dein wird und weil ein integral die veränderung eines funktionswertes an einer stelle nicht spürt würde ich mal versuchen... ist aber lediglich eine erste idee...

Konvergenz Im Quadratischen Mittel 7

Reelle Fourierreihe - Konvergenz im quadratischen Mittel Es gilt erfreulicherweise folgender Satz: Theorem Die Fourierreihe jeder 2 τ -periodischen, über das Intervall [ - τ, + τ] integrierbaren Funktion f von ℝ nach konvergiert im quadratischen Mittel gegen f. Der am Beweis interessierte Leser sei auf eine Extraseite - wo allerdings nur ein etwas schwächeres Resultat, die so genannte Bessel´sche Ungleichung, bewiesen wird - und auf die Literaturseite verwiesen. Bilden wir also gemäß Gleichung (Reelle Fourierreihe - Berechnung der Koeffizienten) die Fourierkoeffizienten a 0, 1, 2, 3, …, b … und dann für jedes N ∈ ℕ gemäß Gleichung (Reelle Fourierreihe - Einführung) die Funktion N, so geht die Größe (Reelle Fourierreihe - Konvergenzbegriffe bei Funktionenfolgen), anschaulich die "mittlere quadratische Abweichung" zwischen und f, für unendlich werdendes gegen 0. Dies läst sich durch ein Resultat ergänzen, das deshalb interessant ist, weil es etwas über die Approximation von durch bei endlichem aussagt.
Die Betragsstriche sind hier natürlich unnötig, hinsichtlich einer späteren Verallgemeinerung auf komplexwertige Funktionen wurden sie aber gesetzt. Anschaulich kann als "mittlere quadratische Abweichung" zwischen den Funktionen und interpretiert werden, welche also beim gerade definierten Konvergenztyp im Grenzfall 0 wird. Was den Zusammenhang zwischen den verschiedenen Konvergenzbegriffen anbelangt, so gilt zunächst einmal gleichmäßige Konvergenz ⇒ punktweise Konvergenz wie man sofort einsieht; nicht jedoch die Umkehrung, d. h., es gibt punktweise konvergente Funktionenfolgen, die nicht gleichmäßig konvergieren. Ferner haben wir (ab jetzt sei Integrierbarkeit von 3, vorausgesetzt) Konvergenz im quadratischen Mittel wie sich relativ einfach beweisen lässt. Die Umkehrung gilt aber auch diesmal nicht, d. es gibt im quadratischen Mittel konvergente Funktionenfolgen, die nicht gleichmäßig konvergieren, ja sogar solche, die nicht einmal punktweise konvergieren (aus der Konvergenz im quadratischen Mittel folgt also nicht die punktweise Konvergenz).